Simplify: (a+b)(c-d)+(a-b)(c+d)+2(ac+bd)
Given: (a+b)(c-d)+(a-b)(c+d)+2(ac+bd)
Simplifying: (a+b)(c-d)+(a-b)(c+d)+2(ac+bd)
=a(c-d)+b(c-d)+a(c+d)-b(c+d)+2(ac+bd)
=ac-ad+bc-bd+ac+ad-bc-bd+2ac+2bd
=ac+ac+2ac-ad+ad+bc-bc-bd-bd+2bd
=(ac+ac+2ac)+-ad+ad+bc-bc+-bd-bd+2bd
=4ac+0+0+0
=4ac
Therefore, (a+b)(c-d)+(a-b)(c+d)+2(ac+bd)=4ac.
Question 3(iv) Simplify: (a+b)(c-d)+(a-b)(c+d)+2(ac+bd)