Solve for:
1x-1x-2+1x-3x-2=23,x≠1,2,3
Step 1: Take the L.C.M of the denominator and simplify the expression in LHS
We have given 1x-1x-2+1x-3x-2=23,x≠1,2,3
L.C.M of x-1x-2 and x-3x-2 is x-1x-2x-3
∴1x-1x-2+1x-3x-2=23,x≠1,2,3
⇒x-3+x-1x-1x-2x-3=23
⇒2x-4x-1x-2x-3=23
⇒2x-2x-1x-2x-3=23
⇒ 2x-1x-3=23
⇒ 2x2-3x-x+3=23
⇒ 1x2-4x+3=13
⇒ x2-4x+3=3
Step 2: Solve the above quadratic equation
x2-4x+3=3
⇒x2-4x+3-3=0
⇒ x2-4x=0
⇒ xx-4=0
⇒x=0orx-4=0⇒x=0orx=4
Hence, x=0 and x=4 are the solution of given equation.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.
Determine whether the following numbers are in proportion or not:
13,14,16,17
Let [k] denotes the greatest integer less than or equal to k. Then the number of positive integral solutions of the equation [x[π2]]=⎡⎢ ⎢⎣x[1112]⎤⎥ ⎥⎦ is