Solve the following equation:cos2x+3sinx=2
Solve cos2x+3sinx=2
cos2x+3sinx=2⇒1-2sin2x+3sinx=2∵cos2A=1-2sin2A⇒2sin2x-3sinx+1=0⇒2sinx-1sinx-1=0
So, 2sinx-1=0 or sinx-1=0
For,sinx=12sinx=12⇒x=sin-112⇒x=nπ+-1nπ6
And
For,sinx=1sinx=1⇒x=sin-11⇒x=2nπ+π6
Hence the solution of the given equation cos2x+3sinx=2 is either x=nπ+-1nπ6 or x=2nπ+π6.