The D.E whose solution is x2a2+y2b2=1
xyy2+xy1=yy1
xyy2+y1=y
x2y2+xy1=y
x2y2+2xy1=y12
Step 1. Differentiate x2a2+y2b2=1 with respect to x
2xa2+2yy1b2=0⇒2xa2=-2yy1b2⇒-xb2a2=yy1⇒yy1=-xb2a2.......................(i)
Step 2.Differentiating (i) with respect to x.
yy2+y12=-b2a2[(uv)'=uv'+vu']⇒yy2+y12=yy1xfromeq(i)⇒x(yy2+y12)=yy1⇒xyy2+xy12=yy1
Hence option (A) is the correct option.