wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The general solution ofsinx-3sin2x+sin3x=cosx-3cos2x+cos3x.


Open in App
Solution

Given:

sinx3sin2x+sin3x=cosx3cos2x+cos3x.(sinx+sin3x)3sin2x=(cosx+cos3x)3.cos2x2.sin2xcosx3.sin2x=2.cos2xcosx3.cos2xsin2x(2cosx3)=cos2x(2cosx3)sin2x=cos2xtan2x=12x=+π4x=2+π8 Note:cosx+cosy=2cosx+y2cosx-y2sinx+siny=2sinx+y2cosx-y2cos(-x)=cosx

Hence, the general solution ofsinx-3sin2x+sin3x=cosx-3cos2x+cos3x is x=2+π8


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon