The value of(a+b)2+(a–b)2 is
2a+2b
2a–2b
2a2+2b2
2a2–2b2
Explanation for the correct option:
Find the value of(a+b)2+(a–b)2.
(a+b)2+(a–b)2=a2+2ab+b2+a2-2ab+b2∵a+b2=a2+2ab+b2anda+b2=a2-2ab+b2=2a2+2b2∴(a+b)2+(a–b)2=2a2+2b2
∴The correct option is (C).