The value of cos36o-Acos36o+A+cos54o-Acos54o+A is
Determine the value of cos36o-Acos36o+A+cos54o-Acos54o+A.
Since,cos(54o+A)=sin[90o-(54o+A)] and cos(54o-A)=sin[90o-(54o+A)] [using cosθ=sin(90o-θ)]
Now substitute the above value in the given expression:
cos36o-Acos36o+A+cos54o-Acos54o+A=cos36o-Acos36o+A+sin90o-54o-Asin90o-54o+A=cos36o-Acos36o+A+sin36o+Asin36o-A∵cos(A-B)=cosAcosB+sinAsinB=cos36o+Acos36o-A+sin36o+Asin36o-A=cos[36o+A-36o-A]=cos(2A)Hence, the required value of cos36o-Acos36o+A+cos54o-Acos54o+A=cos(2A)