Using a2-b2=(a+b)(a-b), find
512-492
Using the identity
a2-b2=(a+b)(a-b)
Put
a=51,b=49
So,
512–492=(51+49)(51–49)512–492=100×2512–492=200
Hence, 512-492=200.
Using a2 − b2 = (a + b) (a − b), find
(i) 512 − 492 (ii) (1.02)2 − (0.98)2 (iii) 1532 − 1472
(iv) 12.12 − 7.92
Using a2−b2=(a+b)(a−b), find 512−492.
Using a2 −b2 = (a + b) (a − b),find
(i) 512 −492 (ii) (1.02)2 − (0.98)2 (iii) 1532 − 1472
(iv) 12.12 −7.92