Value of Sin 13+S=25
45
115
10
0
Finding the value of S:
Given,
13+S=25
S=25-13
S=(6–5)15
S=115
So, the value of Sis 115
Hence, the correct option is B.
Compare the given fraction and replace '□'by an appropriate sign '<or>'
27□25
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.
Write the number given in the following place value table in decimal form:
Hundreds
Tens
Ones
Tenths
Hundredths
Thousandths
100
1
110
1100
11000
3
2
5