Verify that x3+y3+z3-3xyz= 12x+y+z[(x-y)2+(y-z)2+(z-x)2]
Verifying x3+y3+z3-3xyz=12x+y+z[(x-y)2+(y-z)2+(z-x)2]:
Taking R.H.S.,
Using the identity, a-b2=a2-2ab+b2, we get
x-y2=x2-2xy+y2y-z2=y2-2yz+z2z-x2=z2-2zx+x2
Now put these values in R.H.S., we get,
12x+y+z[(x-y)2+(y-z)2+(z-x)2]=12x+y+z×x2-2xy+y2+y2-2yz+z2+z2-2zx+x2=12x+y+z×x2-2xy+y2+y2-2yz+z2+z2-2zx+x2=12x+y+z×2x2-2xy+2y2-2yz+2z2-2zx=12x+y+z×2×x2-xy+y2-yz+z2-zx=x+y+z×x2-xy+y2-yz+z2-zx=x×x2-xy+y2-yz+z2-zx+y×x2-xy+y2-yz+z2-zx+z×x2-xy+y2-yz+z2-zx=x3-x2y+xy2-xyz+xz2-zx2+x2y-xy2+y3-y2z+yz2-zxy+zx2-xyz+y2z-yz2+z3-z2x=x3-x2y+xy2-xyz+xz2-zx2+x2y-xy2+y3-y2z+yz2-zxy+zx2-xyz+y2z-yz2+z3-z2x=x3-xyz+y3-zxy-xyz+z3=x3+y3+z3-3xyz=L.H.S
Hence, x3+y3+z3-3xyz=12x+y+z[(x-y)2+(y-z)2+(z-x)2] is verified.
Verify that : x3+y3+z3−3xyz=12(x+y+z)[(x−y)2+(y−z)2+(z−x)2)]