Verify the division algorithm for the polynomials
p(x)=2x4−6x3+2x2−x+2 and g(x)=x+2.
Step 1: Dividing p(x)=2x4−6x3+2x2−x+2 from g(x)=x+2:
We get, Quotient =2x3-10x2+22x-45 and Remainder =92
Step 2: Verifying the division algorithim:
Dividend=Quotient×Divisor+Remainder
Taking R.H.S., we get,
Quotient×Divisor+Remainder=2x3-10x2+22x-45×x+2+92=2x3-10x2+22x-45×x+2x3-10x2+22x-45×2+92=2x4-10x3+22x2-45x+4x3-20x2+44x-90+92=2x4-10x3+22x2-45x+4x3-20x2+44x-90+92=2x4-10x3+4x3+22x2-20x2-45x+44x-90+92=2x4-6x3+2x2-x+2=Dividend
Hence, the division algorithm is verified for given polynomials.