What is integration of sinxcosx using sin2x formula?
Integration of sinxcosx using sin2x formula.
We know, sin2x=2sinxcosx
Now,
ā«sinxcosxdx=12ā«2sinxcosxdx=12ā«sin2xdx=12Ć-cos2x2+c[āµā«sinaxdx=-1acosax]=-14cos2x+c
Thus, using the formula sin2x=2sinxcosx ,ā«sinxcosxdx=-14cos2x+c.