For a∈R,|a|>1, let limn→∞(1+23+33+....+n3n73(1(an+1)2+1(an+2)2+.....+1(an+n)2))=54 then the possible value a is/are.
8
-9
-6
7
Explanation for the correct options:
Finding the possible value of a:
limn→∞(1+23+33+....+n3n73(1(an+1)2+1(an+2)2+.....+1(an+n)2))=54limn→∞1n∑r=1n(rn)131n[n2(an+1)2+n2(an+2)2+.....+n2(an+n)2]=54⇒∫01x13dx∫01dx(a+x)2=54[∵rn→x,1n→→dx]⇒[34x43]01[-1a+x]01=3/41a-1a+1=54⇒(a+1)-aa(a+1)=34×154⇒1a(a+1)=172⇒a2+a-72=0⇒a=8or-9
Hence, correct option is (A)&(B).
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.