If f(x)=ax+bx+1, limx→∞f(x)=1 and limx→0f(x)=2, then f(-2)=
0
1
2
3
Explanation for the correct option.
Step 1: Find the value of a and b.
It is given that limx→0f(x)=2
limx→0ax+bx+1=2⇒a0+b0+1=2⇒b=2
and limx→∞f(x)=1
limx→∞ax+bx+1=1⇒limx→∞a+bx1+1x=1⇒a=1
Step 2: Find the value of f(-2).
By substituting the value of a and bin f(x)=ax+bx+1, we get
f(-2)=1×-2+2-2+1=-2+2-1=0
Hence, option A is correct.
f(x)=ax2+bx2+1,limx→0f(x)=1 and limx→∞f(x)=1,then prove that f(−2)=f(2)=1.
Use the factor theorem to determine whether g(x) is a factor of f(x)
f(x)=22x2+5x+2;g(x)=x+2