Evaluate:∫0π2xsinxdx
0
1
-1
2
Explanation for Correct answer:
Let,u=x
on differentiating with respect to x, we get,
du=dx
Let, v=-cosx
on differentiating with respect to x,
dv=sinxdx
∫xsinxdx=x(-cosx)-∫-cosx.dx∵∫udv=uv-∫v.du=x(-cosx)+sinx∵∫cosxdx=sinx∫0π2xsinxdx=x(-cosx)+sinx0π2=π2(-cosπ2)+sinπ2-0(-cos0)+sin0∵cosπ2=0,sinπ2=1=1-0=1
Hence, option (B) is correct.