CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
237
You visited us 237 times! Enjoying our articles? Unlock Full Access!
Question

1x3(x3-1)dx=


A

13logx3x3-1+C

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

13log1-x3x3+C

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

logx3x3-1+C

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

13logx-1-16log(x2+x+1)-13tan-1x+1232+C

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

13logx-1-16log(x2+x+1)-13tan-1x+1232+C


Explanation for the correct option:

Step 1: Expanding the given integral into two parts and defining the integral I1

1x3(x3-1)dx=1+x3-x3x3(x3-1)dxaddandsubtractx3innumerator=x3-x3-1x3(x3-1)dx=x3x3(x3-1)dx-x3-1x3(x3-1)dx=1(x3-1)dx-1x3dx=I1-I2

Let

I1=1(x3-1)dx=1(x-1)(x2+x+1)dx...(i)

Step 2: Finding the value of A,B,andC

To evaluate this integral using the integration of rational numbers

1(x-1)(x2+x+1)=A(x-1)+Bx+C(x2+x+1)...(ii)1(x-1)(x2+x+1)=A(x2+x+1)+Bx+C(x-1)(x-1)(x2+x+1)1=A(x2+x+1)+Bx+C(x-1)...(iii)

Substitute x=1inequation(iii)

1=A(1+1+1)+(Bx+c)(1-1)1=3AA=13

Substitute x=0inequation(iii)

1=A(0+0+1)+(B0+c)(0-1)1=A-C1=13-CA=13C=-23

Substitute x=-1inequation(iii)

1=A(1-1+1)+(B-1+c)(-1-1)1=A+2B-2C1=13+2B-2-23A=13,C=-231=53+2BB=121-53B=12-23B=-13

Substituting the value of A,B,Cinequation(ii)

1(x-1)(x2+x+1)=13(x-1)+-13x+-23(x2+x+1)[A=13,B=-13,C=-23]1(x-1)(x2+x+1)=131(x-1)-13x+2(x2+x+1)

Step 3: Integrating I1

Substitute this in I1

I1=1(x-1)(x2+x+1)dx=131(x-1)-13x+2(x2+x+1)dx=131(x-1)dx-x+2(x2+x+1)dx=131(x-1)dx-2x+22(x2+x+1)dxmultiplyanddivideby2insecondterm=131(x-1)dx-122x+4(x2+x+1)dx=131(x-1)dx-122x+1+3(x2+x+1)dx=131(x-1)dx-122x+1(x2+x+1)+3(x2+x+1)dx=131(x-1)dx-122x+1(x2+x+1)dx-321(x2+x+1)dx=131(x-1)dx-122x+1(x2+x+1)dx-321x+122+322dx...(iv)[x2+x+1=x2+212x+12+32]Step 4: Evaluating the integral using the substitution method

Evaluating 1(x-1)dx

1(x-1)dx=logx-1[1xdx=logx]

Evaluating 2x+1(x2+x+1)dx

2x+1(x2+x+1)dx=dtt[t=(x2+x+1)dt=2x+1]=logt=log(x2+x+1)

Evaluating 1x+122+322dx

1x+122+322dx=132tan-1x+1232[1x2+a2dx=1atan-1xa]=23tan-1x+1232

Step 5: Finding the value of 1x3(x3-1)dx

Substituting the obtained values in equation (iv) we get,

=13logx-1-12log(x2+x+1)-3223tan-1x+1232=13logx-1-1213log(x2+x+1)-133223tan-1x+1232=13logx-1-16log(x2+x+1)-13tan-1x+1232+C

Hence, option (D) is the correct answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon