Integration by Parts
Trending Questions
Q. ∫2 cos 2x In (tanx )dx, is equal to
- sin 2x In (tan x) – 2x + C
- sin 2xIn (tan x) + 2x + C
- sin xIn (tan x) – x + C
- none of these
Q. ∫x{f(x2)g′′(x2)−f′′(x2)g(x2)}dx
- f(x2)g′(x2)−g(x2)f′(x2)+c
- 12{f(x2)g(x2)f′(x2)}+c
- 12{f(x2) g′(x2)−g(x2) f′(x2)}+c
- None of these
Q. If ∫sec2x−2010sin2010xdx=P(x)sin2010x+C, then value of P(π3) is
- 0
- 1√3
- √3
- None of these
Q. ∫1−7 cos2xsin7xcos2xdx=f(x)(sinx)7+C, then f(x) is equal to
- sin x
- cos x
- tan x
- cot x
Q. Let F(x)=∫esin−1x(1−x√1−x2)dx, andF(0)=1, ifF(12)=k√3ex6π, then k =
- π4
- π6
- π2
- π3
Q. If Φ(x)=limn→∞xn−x−nxn+x−n, 0<x<1, ϵN, then ∫(sin−1x)(Φ(x))dx is equal to
- None of these
- x sin−1(x)+√1−x2+C
- −(x sin−1(x)+√1−x2)
- x sin−1 x+√1−x2+C
Q. If ∫sin−1xcos−1xdx=f−1[π2x−xf−1(x)−2√1−x2]+π2√1−x2+2x+C then f(x) is equal to
- sin 3x
- sin 4x
- sin 2x
- sin x
Q. If ∫f(x)dx=Ψ(x), then ∫x5f(x3)dx is equal to
- 13x3Ψ(x3)−∫x2Ψ(x3)dx+C
- 13[x3Ψ(x3)−∫x2Ψ(x3)dx]+C
- 13x3Ψ(x3)−∫x3Ψ(x3)dx+C
- 13x3Ψ(x3)−3∫x3Ψ(x3)dx+C
Q. ∫esinx(x cos3x−sinxcos2x)dx, is equal to
- esinx(tanx+x)+C
- esinx(x−secx)+C
- esinx(secx+tanx)+C
- None of these
Q. A car moves with a variable acceleration given by a=tan−1(t) where t is the time in seconds. Find the velocity of the car after 10 seconds, if it was initially at rest
- 10tan−1(10)−12ln|102|
- 10tan−1(1+102)−12ln|102|
- 10tan−1(10)−12ln|1+102|
- tan−1(10)−12ln|1+102|