Let f(x) be a differentiable function at x=a with f'(a)=2 and f(a)=4. Then limx→axf(a)-af(x)x-a equals
2a+4
2a-4
4-2a
a+4
Explanation of correct answer :
Finding value of limx→axf(a)-af(x)x-a:
Given, f'(a)=2 and f(a)=4.
Using, L-Hopital rule :
=limx→af(a)+xf'(a)-af'(x)1(differentiatingbothnumeratoranddenominator)=f(a)-af'(a)(given)=4-2aThus, the value of limx→axf(a)-af(x)x-a is 4-2a.
Hence, Option (C) is correct.