Evaluate limx→03x2+27x2+21x2
e
1e2
1e
e2
Explanation for correct answer:
Evaluating the given function:
Given,
limx→03x2+27x2+21x2=3.02+27.02+2102=22∞=1∞
We know that,
If, limx→0f(x)g(x)=1∞, then
limx→0f(x)g(x)=elimx→0g(x).f(x)-1
Apply this formula, and we get
limx→03x2+27x2+21x2=elimx→01x2.3x2+27x2+2-1→(i)
First, we solve
limx→01x2.3x2+27x2+2-1=limx→01x2.3x2+2-7x2-27x2+2=limx→0x2x2.-47x2+2=-47.0+2=-42=-2
Substituting this in equation (i)
limx→03x2+27x2+21x2=elimx→01x2.3x2+27x2+2-1=e-2=1e2
Hence, the correct answer is option (B).
Evaluate the following one sided limits:
(i)limx→2+x−3x2−4
(ii)limx→2−x−3x2−4
(iii)limx→0+13x
(iv)limx→8+2xx+8
(v)limx→0+2x15
(vi)limx→π−2tan x
(vii)limx→π2+sec x
(viii)limx→0−x2−3x+2x3−2x2
(ix)limx→−2+x2−12x+4
(x)limx→0+(2−cot x)
(xi)limx→0−1+cosecx