The value of∫14exdx is
e2
2e2
4e2
3e2
Compute the required value:
Given: ∫14exdx
x=t⇒12x·dx=dt
12x·dx=dt
when x=4,t=2x=1,t=1
⇒∫12et·t·dt
using integration by parts ∫f(x)·g(x)dx=f(x)·g'(x)-∫f'(x)·∫g(x)·dx·dx
putting f(x)=t,g(x)=et
⇒2∫12et·t·dt=2tet-∫et·dt⇒2∫12et·t·dt=2tet-et⇒2∫12et·t·dt=2tet-et12⇒2∫12et·t·dt=22(e2)-e-e2+e⇒2∫12et·t·dt=2e2
Hence, option (B) is the correct answer.