The value of limx→1sinex-1-1lnx is
0
e
1e
1
Explanation of the correct option.
Compute the required value.
Given : limx→1sinex-1-1lnx
=sine1-1-1ln1=00
Since, it is 00 form,.apply L.Hospital's rule,
limx→1cosex-1-1(ex-1)1x=cose1-1-1(e1-1)11=cos0×11cos0=1=1
Therefore, the value of limx→1sinex-1-1lnx is 1.
Hence, option D is the correct option.