The value of tan2tan-135+sin-1513 is
22021
11021
5521
2011
The explanation for the correct option
The given trigonometric expression: tan2tan-135+sin-1513.
It is known that, 2tan-1x=tan-12x1-x2.
Thus, 2tan-135=tan-12×351-352.
⇒2tan-135=tan-1651-925⇒2tan-135=tan-1651625⇒2tan-135=tan-165×2516⇒2tan-135=tan-1158
Let us assume that, sin-1513=y
⇒siny=513⇒sin2y=5132⇒1-cos2y=25169∵sin2θ+cos2θ=1⇒cos2y=1-25169⇒cosy=169-25169⇒cosy=144169⇒cosy=1213
Thus, tany=sinycosy.
⇒tany=5131213⇒tany=512⇒y=tan-1512⇒sin-1513=tan-1512
Therefore, tan2tan-135+sin-1513=tantan-1158+tan-1512.
⇒tan2tan-135+sin-1513=tantan-1158+5121-158512∵tan-1A+tan-1B=tan-1A+B1-AB⇒tan2tan-135+sin-1513=45+10241-2532⇒tan2tan-135+sin-1513=5524732⇒tan2tan-135+sin-1513=5524×327⇒tan2tan-135+sin-1513=22021
Hence. option A is correct.