1.2+2.22+3.23+....+n.2n=(n−1)2n+1+2
Let P(n) : 1.2+2.22+3.23+.....+n.2n=(n−1)2n+1+2
For n = 1
1.2=0.2o+2
2=2
⇒ P(n) is true for n = 1
Let P(n) is true for n = k, so
1.2+2.22+3.23+.........+k.2n=(k−1)2k+1+2 ....(1)
We have to show that,
{1.2+2.22+3.23+.....+k.2k}+(k+1)2k+1+k2k+2+2
Now,
={1.2+2.22+3.23+........+k.2k}+(k+1)2k+1
=[(k−1)2k+1+2]+(k+1)2k+1
=2k+1+(k−1+k+1)+2
=k2k+2+2
⇒ p(n) is true for n = k + 1
⇒ p(n) is true for all n epsilon N by PMI