12+22+32+......+n2=n(n+1)(2n+1)6
Let P(n) : 12+22+32+.......+n2=n(n+1)(2n+1)6
For n=1
p(1) : 1 = 1 1(1+1)(2+1)6
1=1
⇒ P(n) is true for n = 1
Let P(n) is true for n = k, so
p(k):12+22+32+......+k2=k(k+1)(2k+1)6 .......(1)
We have to show that p(n) is true for n = k + 1
⇒12+22+32+.....+k2+(k+1)2=()(k+1)(k+2)(2k+3)6
So, 12+22+32+......+k2+(k+1)2.
=k(k+1)(2k+1)6+(k+1)2
[Using equation (1)]
=(k+1)[2k2+k6+(k+1)1]
=(k+1)[2k2+k+6k+66]
=(k+1)[2k2+7k+66]
=(k+1)[2k2+4k+3k+66]
=(k+1)[2k(k+2)+3(k+2)6]
=(k+1)(2k+3)(k+2)6
⇒ P(n) is true for n = k + 1
⇒ P(n) is true for all nϵN by PMI