1.2+2.3+3.4+....+n(n+1)=n(n+1)(n+2)3
Let P(n) : 1.2+2.3+3.4+...+n(n+1)=n(n+1)(n+2)3
For n = 1
1.2=1(1+1)(1+2)3
2=2
⇒ P(n) is true for n = 1
Let P(n) is true for n = k
⇒1.2+2.3+3.4+...+k(k+1)=k(k+1)(k+2)3 .....(1)
We have to show all,
1.2+2.3+3.4+....+k(k+1)+(k+1)(k+2)=(k+1)(k+2)(k+3)3
Now,
{1.2+2.3+3.4+....+k(k+1)}+(k+1)(k+2)
=k(k+1)(k+2)3+(k+1)(k+2)1
=(k+1)(k+2)[k3+1]
=(k+1)(k+2)(k+3)3
⇒ P(n) is true for n = k + 1
⇒ P(n) is true for all n epsilon N by PMI