1.3+3.5+5.7+....+(2n−1)(2n+1)=n(4n2+6n−1)6
Let p(n) : 1.3+3.5+5.7+....+(2n−1)(2n+1)=n(4n2+6n−1)6
For n = 1
1.3=1(4+6−1)3
3=3
⇒ P(n) is true for n = 1
Let P(n) is true for n = k, so
1.3+3.5+5.7+...+(2k−1)(2k+1)=k(4k2+6k−1)3 .......(1)
We have to show that,
1.3+3.5+5.7+...+(2k−1)(2k+1)+(2k+1)(2k+3)=(k+1)[4(k+1)2+6(k+1)−1]3
Now,
{1.3+3.5+5.7+....+(2k−1)(2k+1)}+(2k+1)(2k+3)
=k(4k2+6k−1)3+(2k+1)(2k+3)
[Using equation (1)]
=k(4k2+6k−1)+3(4k2+6k+2k+3)3
=4k3+6k2−k+12k2+18k+6k+93
=4k3+18k2+23k+93
=4k3+4k2+14k2+14k+9k+93
=(k+1)(4k2+8k+4+6k+6−1)3
=(k+1)[4(k+1)2+6(k+1)−1]3
⇒ p(n) is true for n = k + 1
⇒ p(n) is true for all n epsilon N by PMI.