1+3+5+.....+(2n−1)=n2 i.e., the sum of first n odd natural numbers is n2.
Let P(n):1+3+5+........+(2n−1)=n2
For n = 1
P(1) : 1 = 12
1=1
⇒ P(n) is true for n = 1
Let P(n) is true for n = k, so
(k) : 1+3+5+......+(2k−1)=k2 .....(1)
We have to show that
1+3+5+......+(2k−1)+2(k+1)−1=(k+1)2
Now,
1+3+5+...+(2k−1)+2(2k+1)
=k2+(2k+1) [Using equation (1)]
=k2=2k+1
=(k+1)2
⇒ P(n) is true for n = k + 1
⇒ P(n) is true for all n ϵ N by PMI