wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1.3+(2.3)2+(3.3)3+....+(n.3)n=(2n−1)3n+1+34

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
To prove or disprove
1.3+(2.3)2+(3.3)3+.....+(n.3)n=(2n1)3n+1+34

P(n)=1.3+(2.3)2+(3.3)3+......+(n.3)n=(2n1)3n+1+34

Let n=1,
P(1)=1.3=(2×11)31+1+34

1.3=3=LHS
1×32+34=9+34=124=3=RHS

LHS=RHS

P(n) is true for n=1
Assume P(k) is true,
i.e, (1.3)+(2.3)2+(3.3)3+.......+(k.3)k=(2k1)3k+1+34 ...(1)
Now let us prove that P(k+1) is true,
LHS: 1.3+(2.3)2+(3.3)3+...(k.3)k+[(k+1).3]k+1

substitute eq (1),
=(2k1)3k+1+34+[(k+1).3]k+1

=(2k1)3k+1+3+(4k+4)3k+14

=(6k+3)3k+1+34=3×(2k+1)3k+1+34

=(2k+1)3k+1+1+34=[2(k+1)1]3(k+1)+1+34

RHS: [2(k+1)1]3(k+1)+1+34

LHS = RHS when P(k) is true.
hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon