The correct option is
A True
To prove or disprove1.3+(2.3)2+(3.3)3+.....+(n.3)n=(2n−1)3n+1+34
P(n)=1.3+(2.3)2+(3.3)3+......+(n.3)n=(2n−1)3n+1+34
Let n=1,
P(1)=1.3=(2×1−1)31+1+34
∵1.3=3=LHS
1×32+34=9+34=124=3=RHS
∴LHS=RHS
P(n) is true for n=1
Assume P(k) is true,
i.e, (1.3)+(2.3)2+(3.3)3+.......+(k.3)k=(2k−1)3k+1+34 ...(1)
Now let us prove that P(k+1) is true,
LHS: 1.3+(2.3)2+(3.3)3+...(k.3)k+[(k+1).3]k+1
substitute eq (1),
=(2k−1)3k+1+34+[(k+1).3]k+1
=(2k−1)3k+1+3+(4k+4)⋅3k+14
=(6k+3)3k+1+34=3×(2k+1)3k+1+34
=(2k+1)3k+1+1+34=[2(k+1)−1]3(k+1)+1+34
RHS: [2(k+1)−1]3(k+1)+1+34
LHS = RHS when P(k) is true.
hence proved.