wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1+a2-b2 2ab-2b13. 2ab1-a+b2+a+b)2b-2a 1-a2-b2

Open in App
Solution

The given left hand side determinant is,

Δ=| 1+ a 2 b 2 2ab 2b 2ab 1 a 2 + b 2 2a 2b 2a 1 a 2 b 2 |

Apply row operation R 1 R 1 +b R 3 ,

Δ=| 1+ a 2 b 2 +2 b 2 2ab2ab 2b+bb a 2 b 3 2ab 1 a 2 + b 2 2a 2b 2a 1 a 2 b 2 | =| 1+ a 2 + b 2 0 b( 1+ a 2 + b 2 ) 2ab 1 a 2 + b 2 2a 2b 2a 1 a 2 b 2 | =( 1+ a 2 + b 2 )| 1 0 b 2ab 1 a 2 + b 2 2a 2b 2a 1 a 2 b 2 |

Apply row operation R 2 R 2 a R 3 ,

Δ=( 1+ a 2 + b 2 )| 1 0 b 2ab2ab 1 a 2 + b 2 +2 a 2 2aa( 1 a 2 b 2 ) 2b 2a 1 a 2 b 2 | =( 1+ a 2 + b 2 )| 1 0 b 0 1+ b 2 + a 2 a+ a 3 +a b 2 2b 2a 1 a 2 b 2 | = ( 1+ a 2 + b 2 ) 2 | 1 0 b 0 1 a 2b 2a 1 a 2 b 2 |

Expand the determinant along R 1 ,

Δ= ( 1+ a 2 + b 2 ) 2 [ 1 a 2 b 2 +2 a 2 +2 b 2 ] = ( 1+ a 2 + b 2 ) 2 [ 1+ a 2 + b 2 ] = ( 1+ a 2 + b 2 ) 3

Hence, the left hand side of the determinant is equal to the right hand side.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon