11!(n-1)!+13!(n-3)!+15!(n-5)!+....
2n-4n!for even values of n only
2n-4+1n!-1 for even values of n only
1n!2n-1 for all values of n
None of these
Explanation for the correct option:
Let S=11!(n-1)!+13!(n-3)!+15!(n-5)!+....
Multiply and divide the given series by n!
⇒S=1n!n!1!(n-1)!+n!3!(n-3)!+n!5!(n-5)!……
⇒S=1n!C1n+C3n+C5n+……. [∵Crn=n!(n-r)!]
⇒S=1n![2n-1] [∵C1n+C3n+C5n+…..=2n-1]
Hence, Option ‘C’ is Correct.
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.
Determine whether the following numbers are in proportion or not:
13,14,16,17