State which of the following true.
cos2π15cos4π15cos8π15cos(π+π15)
cosπ2cos2π15cos4π15cos8π15 [cos(π+θ)=−cosθ]
⎡⎢⎣∵cosAcos2Acos22Acos23A....cos2n−1A=sin2nA2nsinA⎤⎥⎦
if A=π15
then
=−cosAcos2Acos22Acos23 [∵n−1=3∴n=4]
=−−sin24A24sinA−−sin16×π1516.sinπ15
=−⎛⎜
⎜⎝−sinπ1516sinπ15⎞⎟
⎟⎠ (16π15=(π+π15))
This statement is true =116H.P [∵sin(π+θ)=−sinθ]
(ii)
sin4A−2sin2A−1=0 lies between 0 to 2π
⇒sin4A−2sin2A+1−2=0
⇒(sin2A−1)2−2=0.........(1)
∵0≤sin2A≤1
⇒−1≤sin2A−1≤0
⇒0≤(sin2A−1)2≤1
⇒−2≤(sin2A−1)2−2≤−1.........(1)
from eq (1) and (2)
(sin2A−1)2−2 does not have a solution.
So, statement (ii) is false.
So, Ans (1) is right