wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1. cos2π15cos4π15cos8π15cos16π15=116.
2. One value of A which satisfies the equation sin4A2sin2A1 lies between 0 and 2π.
If 1,2 are true then enter 1 else 0.

Open in App
Solution

State which of the following true.
cos2π15cos4π15cos8π15cos(π+π15)
cosπ2cos2π15cos4π15cos8π15 [cos(π+θ)=cosθ]
cosAcos2Acos22Acos23A....cos2n1A=sin2nA2nsinA
if A=π15
then
=cosAcos2Acos22Acos23 [n1=3n=4]
=sin24A24sinAsin16×π1516.sinπ15
=⎜ ⎜sinπ1516sinπ15⎟ ⎟ (16π15=(π+π15))
This statement is true =116H.P [sin(π+θ)=sinθ]
(ii)
sin4A2sin2A1=0 lies between 0 to 2π
sin4A2sin2A+12=0
(sin2A1)22=0.........(1)
0sin2A1
1sin2A10
0(sin2A1)21
2(sin2A1)221.........(1)
from eq (1) and (2)
(sin2A1)22 does not have a solution.
So, statement (ii) is false.
So, Ans (1) is right

1091595_1035418_ans_1f6ad2608d744018bc9857adf5ee4dc0.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon