(1) Vector equation of the plane is :
→r.(^i+^j−^k)=2
Substituting →r=x^i+y^j+z^k, we get
(x^i+y^j+z^k).(^i+^j−^k)=2
⇒x+y−z=2
Hence, the Cartesian equation of the plane is
x+y−z=2
(2) Vector equation of the plane is :
→r.(2^i+3^j−4^k)=1
Substituting →r=x^i+y^j+z^k, we get
(x^i+y^j+z^k).(2^i+3^j−4^k)=1
⇒2x+3y−4z=1
Hence, the Cartesian equation of the plane is
2x+3y−4z=1
(3) Vector equation of the plane is :
→r.[(s−2t)^i+(3−t)^j+(2s+t)^k]=15
Substituting →r=x^i+y^j+z^k, we get
(x^i+y^j+z^k)→r.[(s−2t)^i+(3−t)^j+(2s+t)^k]=15
⇒x(s−2t)+y(3−t)+z(2s+t)=15
Hence, the Cartesian equation of the plane is
(s−2t)x+(3−t)y+(2s+t)z=15.