1+1(1+2)+1(1+2+3)+⋯+1(1+2+3+⋯+n)=2n(n+1)
Let P(n) = 1+1(1+2)+1(1+2+3)+⋯+1(1+2+3+⋯+n)=2n(n+1)
For n = 1
P(1)=1=2×11+1⇒1=1∴P(1) is true
Let P (n0 be true for n = k
∴P(k)=1+1(1+2)+1(1+2+3)+⋯+1(1+2+3+⋯+k)=2kk+1Forn=k+1P(k+1)=−1+1(1+2)+11+2+3+⋯+1(1+2+3+⋯+k)+1(1+2+3+⋯+k+1)=2kk+1+1(1+2+3+⋯+k+1)
Now1+2+3+⋯+k+1Is an A.P.∴1+2+3+⋯+k+1=(k+1)2[1+k+1]=(k+1)(k+2)2∴P(k+1)=2kk+1+1(k+1)(k+2)2=2kk+1+2(k+1)(k+2)=2k+1[k+1k+2]=2k+1[k2+2k+1k+2]=2k+1[(k+1)2k+2]=2(k+1)(k+2)
∴ P (k + 1) is true
Thus P (k) is true ⇒ P (k + 1) is true
Hence by principle fo mathematical induction,
P(n) is true for all nϵN.