Byju's Answer
Standard XII
Mathematics
Sum of Coefficients of All Terms
Prove that ...
Question
Prove that
1
−
2
n
+
2
n
(
2
n
−
1
)
2
!
−
2
n
(
2
n
−
1
)
(
2
n
−
1
)
3
!
+
.
.
.
+
(
−
1
)
n
−
1
2
n
(
n
−
1
)
.
.
.
(
n
+
2
)
(
n
−
1
)
=
(
−
1
)
n
+
1
(
2
n
)
2
(
n
!
)
2
,
where n is a + ive integer.
Open in App
Solution
L.H.S.
=
S
=
1
−
2
n
C
1
+
2
n
C
2
−
.
.
.
.
.
.
+
(
−
1
)
n
−
1
2
n
C
n
−
1
n terms
Now we know that
2
n
C
0
=
1
=
2
n
C
2
n
2
n
C
1
=
2
n
C
2
n
−
1
etc.
∴
2
S
=
(
2
n
C
0
+
2
n
C
2
n
)
−
(
2
n
C
1
+
2
n
C
2
n
−
1
)
+
.
.
.
.
.
+
(
−
1
)
n
−
1
(
2
n
C
n
−
1
+
2
n
C
n
+
1
)
2
S
=
2
n
C
0
−
2
n
C
1
+
2
n
C
2
−
.
.
.
.
.
.
−
2
n
C
2
n
−
1
+
2
n
C
2
n
2n terms
Add
(
−
1
)
n
2
n
C
n
to both sides to make
(
2
n
+
1
)
terms
2
S
+
(
−
1
)
n
2
n
C
n
=
C
0
−
C
1
+
C
2
−
+
C
2
n
=
0
[ on putting x = -1 in the expansion of
(
1
+
x
)
2
n
which contains (2n + 1) terms ]
∴
S
=
−
1
2
(
−
1
)
n
2
n
C
n
=
(
−
1
)
n
+
1
(
2
n
)
!
2
(
n
!
)
2
=
R
.
H
.
S
.
Suggest Corrections
0
Similar questions
Q.
Prove that
1
+
2
n
3
+
2
n
(
2
n
+
2
)
3.6
+
2
n
(
2
n
+
2
)
(
2
n
+
4
)
3.6.9
+
.
.
.
.
.
=
2
n
{
1
+
n
3
+
n
(
n
+
1
)
3.6
+
n
(
n
+
1
)
(
n
+
2
)
3.6.9
+
.
.
.
.
}
Q.
If n is a positive integer, find the value of
2
n
−
(
n
−
1
)
2
n
−
2
+
(
n
−
2
)
(
n
−
3
)
⌊
2
−
(
n
−
3
)
(
n
−
4
)
(
n
−
5
)
⌊
3
2
n
−
6
+
.
.
.
.
.
;
and if n is a multiple of
3
,
show that
1
−
(
n
−
1
)
+
(
n
−
2
)
(
n
−
2
)
⌊
2
−
(
n
−
3
)
(
n
−
4
)
(
n
−
5
)
⌊
3
+
.
.
.
.
=
(
−
1
)
n
.
Q.
Find the sum of
1.
n
2
+
2
(
n
−
1
)
2
+
3
(
n
−
2
)
2
+
.
.
.
.
.
.
n
.1
2
Q.
If
n
and
p
be two
+
ive integers such that
n
≥
p
+
2
and
D
(
n
,
p
)
∣
∣ ∣ ∣
∣
n
C
p
n
C
p
+
1
n
C
p
+
2
n
+
1
C
p
n
+
1
C
p
+
1
n
+
1
C
p
+
2
n
+
2
C
p
n
+
3
C
p
+
1
n
+
2
C
p
+
2
∣
∣ ∣ ∣
∣
then prove that
D
(
n
,
p
)
=
n
+
2
C
3
p
+
2
C
3
D
(
n
−
1
,
p
−
1
)
Q.
Prove
that
1
n
+
1
+
1
n
+
2
+
.
.
.
+
1
2
n
>
13
24
,
for
all
natural
numbers
n
>
1
.
[NCERT EXEMPLAR]
View More
Related Videos
Sum of Coefficients of All Terms
MATHEMATICS
Watch in App
Explore more
Sum of Coefficients of All Terms
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app