tan A =1/cotA =>tan²A =1/cot²A
(1 + 1/tan²A)(1 + 1/cot²A) = 1/(sin²A - sin^4A)
LHS
= (1 + 1/tan²A)(1 + 1/cot²A)
= ((tan²A+1)/tan²A)((cot²A+1)/cot²A)
Using trigonometric identiities tan²A+1 =sec²A and cot²A+1 =cosec²A
= (sec²A/tan²A)(cosec²A/cot²A)
= (sec²A.cosec²A)/(tan²A.cot²A)
tan²A.cot²A=1 AS tan A =1/cotA
= sec²A.cosec²A
Using trigonometric identiities secA=1/cosA and cosecA =1/sinA
= 1/(sin²A.cos²A)
As cos²A =1 -sin²A
= (1/sin²A(1-sin²A)
= 1/(sin²A - sin^4.A)
= RHS