1×1!+2×2!+3×3!+.....+n×n!=(n+1)!−1 for all N ϵ N.
Consider equation
1×1!+2×2!+3×3!+.....+n×n!
Lets take (n+1)!−n!=n!(n+1−1)
=n×n!
Now substitute n=1,2,3,4,....n in above equation we get
2!−1!=1×1!
3!−2!=2×2!
4!−3!=3×3!
..........
(n+1)!−n!=n×n!
Adding all the above terms gives
1×1!+2×2!+3×3!+.......n×n!=2!−1!+3!−2!+4!−3!....+(n+1)!−n!
1×1!+2×2!+3×3!+......n×n!=(n+1)!−1