1) What is the derivative of ey with respect to x?
2) if cos y =xcos(a+y), with cos a not equal to +_1. Prove that dy/dx = cos2(a+y)/sin a.
[1]
First take the derivative like you normally would:
e^y
Then take the derivative of the stuff substituted inside, the stuff where an x would usually be:
(d/dx)y= dy/dx
Multiply them together.
e^y * dy/dx
Summarized mathemetically,
du/dx = du/dy * dy/dx
where here u=e^y
[2]
Given : cos y = x · cos (y+a) ......... (1)
∴ x = cos y / cos (y+a)
∴ dx/dy
= [ cos (y+a). ( - sin y ) - ( cos y ). ( - sin (y+a)) ] / cos² (y+a)
= [ sin (y+a). cos y - cos (y+a). sin y ] / cos² (y+a)
= { sin [ (y+a) - y ] } / cos² (y+a)
= sin a / cos² (y+a).
∴ dy/dx = [ 1 / ( dx/dy ) ] = cos² (y+a) / sin a