wiz-icon
MyQuestionIcon
MyQuestionIcon
8
You visited us 8 times! Enjoying our articles? Unlock Full Access!
Question

16 divides n4+4n2+11 , if n is an odd integer.

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
N is odd integers .
so, Let n = 2k + 1 , k ∈ ℕ

now, n⁴ + 4n² + 11
= (2k +1)² + 4(2k + 1)² + 11
= (4k² + 4k + 1)² + 4(4k² + 4k + 1) + 11
= (16k⁴ + 16k² + 1 + 32k³ + 8k + 8k²) + 16k² + 16k + 4 + 11
= 16k⁴ + 32k³ + 40k² + 24k + 16
= 16[k⁴ + 2k³ + 1] + 40k² + 24k
= 16[k⁴ + 2k² + 1] + (80k² + 48k)/2
= 16[k⁴ + 2k² + 1] + 16k(5k + 3)/2

here, k(5k + 3)/2 is also a integer for all natural number of k
so, assume k(5k + 3)/2 = m

now, n⁴ + 4n² + 11
= 16[k⁴ + 2k² + 1] + 16m
= 16[k⁴ + 2k² + 1 + m]

hence, it is clear that 16 divides n⁴ + 4n² + 11 when n is odd integers.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon