The given function is,
f( x )= f ′ ( ax+b ) ( f( ax+b ) ) n = 1 a f ′ ( ax+b )a ( f( ax+b ) ) n
Integrating both sides we get,
∫ f( x )dx = 1 a ∫ f ′ ( ax+b )a ( f( ax+b ) ) n dx (1)
Put f( ax+b )=t.
Differentiate both sides with respect to x,
f ′ ( ax+b ) d dx ( ax+b )= dt dx a f ′ ( ax+b )dx=dt (2)
From equation (1) and (2),
∫ f(t)dt = 1 a ∫ t n dt = t n+1 a( n+1 ) +c
Substitute value of t.
∫ f( x )dx = [ f( ax+b ) ] n+1 a( n+1 ) +c
Thus, integration of f( x ) is [ f( ax+b ) ] n+1 a( n+1 ) +c.