To prove: cotxcot2x−cot2xcot3x−cot3xcotx=1
cot3x=cot( x+2x ) cot3x= cot2xcotx−1 cot2x+cotx cot3xcot2x+cot3xcotx=cot2xcotx−1 cotxcot2x−cot2xcot3x−cotxcot3x=1
Thus, the given trigonometric equation is proved.
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1