z1=(z3−z2)×eiπ3+z2
⇒z1=12×(z3−z2)(1+i√3)+z2
⇒2z1=(z3−z2)(1+i√3)+2z2
⇒2z1=z3(1+i√3)+z2(1−i√3)
⇒z2=11−i√3×[2z1−z3(1+i√3)]
⇒2z2=12(2+i2√3)z1−12(1+i√3)2z3
⇒2z2=(1+i√3)z1+(1−i√3)z3
Now, 2(z2+z4)=2(z1+z3) since the
diagonals bisect each other.
∴2z4=2z1+2z3−2z2
∴2z4=2z1+2z3−(1+i√3)z1−(1−i√3)z3
i.e. 2z4=(1−i√3)z1+(1+i√3)z3