Inequality of 2 Complex Numbers
Trending Questions
Q. If at least one value of the complex number z = x + iy satisfy the condition |z+√2|=a2−3a+2 and the inequality |z+i√2|=a2, then
- a > 2
- a = 12
- a < 2
- None of these
Q.
If ∣∣z−4z∣∣=2, then the greatest value of |z| is
1+√2
2+√2
√3+1
√5+1
Q. If |z - 25i| ≤ 15, then |max amp(z) - min.amp(z)| =
- cos−1(35)
- π−2 cos−1(35)
- π2+cos−1(35)
- sin−1(35)−cos−1(35)
Q. The locus of z satisfying the inequality log1/3|z+1|>log1/3|z−1| is
- I (z) < 0
- R (z) < 0
- R (z) > 0
- None of these
Q. If |z - 25i| ≤ 15, then |max amp(z) - min.amp(z)| =
- π−2 cos−1(35)
- π2+cos−1(35)
- sin−1(35)−cos−1(35)
- cos−1(35)
Q. The locus of z satisfying the inequality log1/3|z+1|>log1/3|z−1| is
- R (z) < 0
- R (z) > 0
- I (z) < 0
- None of these
Q. If at least one value of the complex number z = x + iy satisfy the condition |z+√2|=a2−3a+2 and the inequality |z+i√2|=a2, then
- None of these
- a > 2
- a = 12
- a < 2
Q.
If ∣∣z−4z∣∣=2, then the greatest value of |z| is
1+√2
2+√2
√3+1
√5+1
Q. If z1, z2, z3 are the vertices of a triangle in argand plane such that |z1−z2|=|z1−z3|, then arg(2z1−z2−z3z3−z2) is
- ±π3
- 0
- ±π2
- ±π6
Q. Let z=a+ib (where a, b ∈ R and i=√−1) such that |2z+3i|=|z2|. Identify the correct statement(s)?
- |z|maximum is equal to 3.
- |z|minimum is equal to 1.
- If |z| is maximum, then a3+b3 is equal to 27.
- |z| is minimum, then (a2+2b2) is 2.