The given equation can be re-written as
22x+22x−1=3x−1/2+3x+1/2
22x(1+12)=3x(1√(3)+√3)
or 3.22x−1=4.3x−1/2
or 22x−3=3x−3/2
Now by trial, x=32 is one solution
Now taking logarithm to the base 10, we get
(2x−3)log102=(x−32)log103
or (2log2−log3)x=\dfrac{3}{2}(2log 2 \, - \, log 3)Thisalsogivesx \, = \, \dfrac{3}{2}$
Hence x=32is the only solution