wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

41n – 14nis a multiple of 27.

Open in App
Solution

Let the given statement be P(n), i.e.,

P(n):41n – 14nis a multiple of 27.

It can be observed that P(n) is true for n = 1 since , which is a multiple of 27.

Let P(k) be true for some positive integer k, i.e.,

41k – 14kis a multiple of 27

∴41k – 14k = 27m, where mN … (1)

We shall now prove that P(k + 1) is true whenever P(k) is true.

Consider

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon