The given equations are:
............(i)
.............(ii)
Putting , we get:
5u + 6y = 13 .............(iii)
3u + 4y = 7 ...........(iv)
On multiplying (iii) by 4 and (iv) by 6, we get:
20u + 24y = 52 ...........(v)
18u + 24y = 42 ............(vi)
On subtracting (vi) from (v), we get:
2u = 10 ⇒ u = 5
On substituting in (i), we get:
⇒ 25 + 6y = 13
⇒ 6y = (13 − 25) = −12
⇒ y = −2
Hence, the required solution is and y = −2.