wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

7 + 77 + 777 + ... + 777 ...........n-digits7=781(10n+1-9n-10)

Open in App
Solution

Let P(n) be the given statement.
Now,
P(n): 7+77+777+...+777...n digits...7=781(10n+1-9n-10)Step(1): P(1) = 7 =781(102-9-10)=781×81 Thus, P(1) is true.Step 2: Let P(m) be true.Then, 7+77+777+...+777...m digits...7=781(10m+1-9m-10)We need to show that P(m+1) is true whenever P(m) is true.

Now, P(m + 1) = 7 + 77 + 777 +....+ 777...(m + 1) digits...7

This is a geometric progression with n= m+1.Sum P(m+1): =799+99+999+...m+1term=7910-1+100-1+...(m+1) term=7910+100+1000+...(m+1) term -(1+1+1...m+1 times...+1=791010m+1-19-m+1=78110m+2-9m-19Thus, P(m+1) is true.By the principle of mathematical induction, Pn is true for all nN.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon