Division of a Polynomial by a Monomial
Trending Questions
Q. Question 14
By Remainder theorem, find the remainder when p(x) is divided by g(x).
(i) p(x)=x3–2x2–4x–1, g(x)=x+1
(ii) p(x)=x3–3x2+4x+50, g(x)=x–3
(iii) p(x)=4x3–12x2+14x–3, g(x)=2x–1
(iv) p(x)=x3–6x2+2x−4, g(x)=1−32x
By Remainder theorem, find the remainder when p(x) is divided by g(x).
(i) p(x)=x3–2x2–4x–1, g(x)=x+1
(ii) p(x)=x3–3x2+4x+50, g(x)=x–3
(iii) p(x)=4x3–12x2+14x–3, g(x)=2x–1
(iv) p(x)=x3–6x2+2x−4, g(x)=1−32x
Q. Question 7
If a, b and c are all non-zero and a + b + c = 0, then prove that a2bc+b2ac+c2ab=3.
If a, b and c are all non-zero and a + b + c = 0, then prove that a2bc+b2ac+c2ab=3.
Q. Question 21
Find the value of m, so the 2x- 1 be a factor of 8x4+4x3–16x2+10x+m.
Find the value of m, so the 2x- 1 be a factor of 8x4+4x3–16x2+10x+m.
Q. Factorise:
(i) 12x2−7x+1
(ii) 2x2+7x+3
(i) 12x2−7x+1
(ii) 2x2+7x+3
Q.
Factorise 27−x3y3+6−2xy
(2−xy)(9−3xy+x2y2)
(2−xy)(11−3xy+x2y2)
(2−xy)(11−4xy)
(2+xy)(11−3xy−x2y2)
Q.
Factorise each of the following: 8a3 – b3– 12a2b + 6ab2
Q. Add the following polynomials.
(i) x2−9x+√3:−19x+√3+7x2
(ii)2ab2+3a2b−4ab;3ab−8ab2+2a2b
(i) x2−9x+√3:−19x+√3+7x2
(ii)2ab2+3a2b−4ab;3ab−8ab2+2a2b
Q. Find the remainder using remainder theorem, when:
5x3+2x2−6x+12 is divided by x+2
Q. If A=2y2+3x−x2, B=3x2−y2 and C=5x2−3xy then find
B+C
B+C
Q. Factorise : 16−x2−2xy−y2 The factors are
- (4+x−y)(4+x+y)
- (4−x−y)(4−x+y)
- (2+x+y)(2−x−y)
- (4+x+y)(4−x−y)
Q. If the polynomial x3−ax2+2x−a is divided x−a, then remainder is:
- a3
- a2
- a
- −a
Q.
Divide m2+7m−60 by (m−5).
4(m - 6)
2(m + 6)
(m + 12)
(m - 12)
Q. Factorise:
(i) 12x2−7x+1
(ii) 2x2+7x+3
(i) 12x2−7x+1
(ii) 2x2+7x+3
Q. 27x3y9x2= ______.
- 9x2y
- 9xy2
- 9xy
- 3xy
Q. Find the remainder when 4x3−5x2+6x−2 is divided by x−1.
Q. Factorise:
(i) 12x2−7x+1
(ii) 2x2+7x+3
(i) 12x2−7x+1
(ii) 2x2+7x+3
Q. Divide 2x3+3x2−11x−6 by x2+x−6.
Q. Find the value of m, if 2m+6=16m.
- 2
Q. In each of the following, using the remainder theorem, find the remainder when f(x) is divided by g(x) and verify the result by actual division:
1. f(x)=x3+4x2−3x+10, g(x)=x+4
1. f(x)=x3+4x2−3x+10, g(x)=x+4
Q. In each of the following, use factor theorem to find whether polynomial g(x) is a factor of polynomial f(x) or not:
(2) f(x)=3x4+17x3+9x2−7x−10;g(x)=x+5
(2) f(x)=3x4+17x3+9x2−7x−10;g(x)=x+5
Q.
Factorise a2+7a+10 + pa + 6p
a+1
2
a+2
1
Q.
The factorization of x3+1 is
(x+1)(x2+x+1)
(x+1)(x2+x-1)
(x+1)(x2-x+1)
(x-1)(x2-x+1)
Q.
Factorise (n2+22n+96)
(n + 16)(n + 6)
(n – 16)(n + 6)
(n – 16)(n – 6)
(n + 16)(n – 6)
Q. Use the Factor Theorem to determine whether g(x) is a factor of p(x) if p(x)=2x3+x2−2x−1 and g(x)=x+1
Q.
Divide the polynomial by monomial:
y3−64;y−4- (y−4)(y2+4y+16)+0
- (y+2)(y2+y+16)+0
- (y−3)(y2+3y+2)+0
- (y+74)(y2−4y+16)+0
Q.
Factorise 2x2+13x+15
(x+ 5) (2x - 3)
(x+ 5) (2x + 3)
( x - 5) ( 2x - 3)
(x- 5) (2x + 3)
Q.
Solve:4yz(z2+6z−16)÷2y(z+8)
z(z−4)
z−2
z(z−2)
2z(z−2)
Q. If the degree of 12x3y8zn is 14, then n=
Q. The obtained polynomial when 3x2+x is divided by x is:
- 3x+1
- 3
- 3x−2
- 3x−1
Q.
Factorising and dividing a2+7a+10 by (a+5) gives:
a + 1
1
2
a + 2