Introduction to Quadrilateral
Trending Questions
is a parallelogram.
Show that .
- 40∘
- 60∘
- 120∘
- None of the above
If in a quadrilateral ABCD, AB=BC and CD=DA, then the figure is a kite.
True
False
- 116∘
- 118∘
- 120∘
- 122∘
- 24 degrees
- 156 degrees
- 360 degrees
- 280 degrees
- 360∘
- 180∘
- 90∘
- 270∘
The angles of a quadrilateral are in the ratio 3:4:5:6. Find the angles of the quadrilateral.
60∘, 80∘, 100∘, 120∘
30∘, 40∘, 50∘, 60∘
40∘, 100∘, 80∘, 140∘
10∘, 20∘, 30∘, 40∘
- ∠SAQ=∠ABC
- ∠SAD=∠ABC
- ∠SAQ=∠DAB
- ∠SRD=∠ADC
- 2 cm, 4 cm
- 4 cm, 6 cm
- 1 cm, 2 cm
- 3 cm, 4 cm
In a quadrilateral ABCD, ∠A=90∘, ∠B=3x, ∠C=3x+5, ∠D=8x−15.
Then, the value of ∠D is
65∘
60∘
20∘
145∘
- 110∘, 40∘ and 30∘
- 30∘, 40∘ and 60 ∘
- 90∘, 70∘ and 80∘
- 80∘, 20∘ and 60∘
- 11 cm
- 14 cm
- 12 cm
- 13 cm
- 180∘
- 360∘
- 540∘
- 720∘
The angles of a quadrilateral are in the ratio 1:2:5:7. The angles of the quadrilateral are:
40°, 100°, 80°, 140°
60°, 80°, 100°, 120°
10°, 20°, 30°, 40°
30°, 40°, 50°, 60°
- 10 cm
- 15 cm
- 20 cm
- 5 cm
Then ABCD is a
- Rectangle
- Trapezium
- Kite
- Parallelogram
Draw a rough sketch of the polygon of sides and write its name.
- 44°
- 22°
- 33°
- 11°
How many sides an octagon has ?
Statement 1: Sum of the interior angles of a quadrilateral is 360∘.
Statement 2: A diagonal divides the quadrilateral into two triangles. The sum of angles of a triangle is 180∘.
Both statements are correct and statement 2 has sufficient information to prove statement 1.
Both statements are correct but statement 2 doesn’t have sufficient information to prove statement 1.
Statement 1 is correct and statement 2 wrong.
Both statements are wrong.
Which of the following options represents diagonal(s) of the given quadrilateral?
BD only
AD and DC
AB and BC
BD and AC
respectively. Sort the angles in increasing order of magnitude.
- ∠Q
- ∠P
- ∠R
- ∠S