Logarithmic Inequalities
Trending Questions
Let be a continuous function such that for all
If , then the value of is equal to:
Maximum value of when , is
- (−∞, 32)
- (32, ∞)
- (32, 1)
- None of these
If , where a and b are fixed positive real numbers, then
is equal to.
An experiment consists of casting a pair of dice and observing the number that falls uppermost on each die.
Determine the event that the number falling uppermost on one die is a and the number falling uppermost on the other die is greater than . (Select all that apply.)
- x>y
- None of these
- x<y
- x=y
- (−∞, 2]
- [4, +∞]
- None of these
- [2, 4]
If 1log3 π+1log4 π>x, then the biggest possible integer x can take -
2
4
3
5
- xε(0, ∞)
- xε(0, 19)∪(9, ∞)
- x>1
- x<2
If log0.5 (x−1)<log0.25 (x−1), then x lies in the interval.
(2, ∞)
(3, ∞)
(−∞, 0)
(0, 3)
- 3
- 4
- 5
- 2
If x<0, y<0, then log (xy) is equal to _______________ .
log(-x) + log(-y)
- log x - log y
log x + log y
log x - log y
Solve for x:
log3(x3)+log1/9(x)<1
(−∞, 1)
(−∞, −2)∪(−2, −1)∪(−1, 0)
None of these.
(0, 81)
- 2
- 3
- 4
- 5
√x2−3x+2>2x−5.
If A is the set of all xϵR such that x(log x)2−3 log x+1>1000, and A=(a, ∞) then √10a will be
If x∈R satisfies (log10100x)2+(log1010x)2+log10x≤14 then x contains the interval
[10−92, 10]
(−1, ∞)
(0, 10)
(0, ∞)
- −2
- −1
- 1
- 3
Find x if log2 (x−5)>3
x<13
x>5
x>13
x>8
- xε(0, 19)∪(9, ∞)
- x>1
- xε(0, ∞)
- x<2
If x=log5(1000) and y=log7(2058) then
x > y
x < y
x = 3 + log5 8
None of these
log35×log2527=
3 log 5
2/3
3/2
-3/2
x>√24−5x.
- log105.log1020+(log102)2
- 2log2+log3log48−log4
- −log5log3√91/5
- 16log√34(6427)
- 2
- 3
- 3.5
- π
- 12(4^i+8^j+11^k)
- 13(6^i+13^j+18^k)
- 14(8^i+14^j+9^k)
- 13(6^i+11^j+15^k)
(i) 0.555.......
- xε(0, ∞)
- xε(0, 19)∪(9, ∞)
- x>1
- x<2