Relationship between Trigonometric Ratios
Trending Questions
- tan A√1+tan2A, 1√1+tan2A
- 1√1+tan2A, tan A√1+tan2A
- tan A√1−tan2A, 1√1−tan2A
- 1√1−tan2A, tan A√1−tan2A
In a , if the sides are and , then is equal to
The value of tan 45 is
1
0
90
45
Prove: sin3a=3sina−4sin3a, when a=30∘
Find the values of cot θ and cosec θ in the figure given above.
2, 52
43, 53
2, 54
52, 2
If are the interior angles of trinagles , then show that .
The value of tan63∘+cot23∘tan27∘+cot67∘−tan63∘tan67∘ is
1
0
-1
2
Question 8
If cot A = 43, check whether (1−tan2A)(1+tan2A)=cos2A−sin2A or not.
Find the Length of all sides of the given right angled triangle if the area is 36 cm2
AB = 6cm , BC = 12cm, CA = 18
AB = 12cm , BC = 6cm, CA = 6√3
AB = 12cm , BC = 6cm, CA = 3√6
AB = 6cm , BC = 12cm, CA = 6√3
State True/False
In any ΔABC where ∠B=90∘, sin2A+cos2C=1
False
True
If sin4A = cos(A - 30), where 4A and (A - 30) are acute angles, then the value of A is
If sin α = 513 and sin β = 45 then the value of cos α cos β - sin α sin β is
1665
965
1165
1565
- 3√2
- 1√2
- 12
- 0
- 27
- 29
- 24
- 23
- 1 + sin A
- 1 + cos A
- cos A
- sin A
There are 3 squares which are arranged in such a manner that it forms a triangle as shown in the figure below. If the area of square A and B is 81cm2 and 144cm2 respectively, then find the area of the third square C.
1. Sin square ( 75 - A ) + cos square ( 45 +A )
Match the following:
1. cos(90∘−A) a) secA2. cot(90∘−A)b) tanA 3. cosec(90∘−A) c) sinA
1 - a; 2 - b; 3 - c
1- c; 2 - b; 3 - a
1 - a; 2 - c; 3 - b
1 - b; 2 - c;3 - a
- 125
- 1312
- 135
- 125
1 + tan2A = sec2A is valid for which of the following ranges
0 A 90
0 A 90
0 A 90
0 A 90
Find cos(∠C)+tan(∠A) + cosec(∠C).
- 125
- 1312
- 135
- 125
If 17cos θ=15,
then, tan θ+2 sec θ=_____.
2
3
215
245
Match the following
List I List IIA.1+cos A−sin A1+cos A+sin Ai.1cosec A+1sec AB.(1+1tan2A)(1+1cot2A)II.sec A−tan AC.cos A1−tan A+sin A1−cot Aiii.1cos2 A−cos4A
A-ii, B-iii, C-i
A-iii, B- ii, C-i
None of these
A- i, B-ii, C-iii